hat geschrieben:ich habe SRT-Wurfparabel Formel geliefert
Alles was du geliefert hast ist
hat geschrieben:lololol
du kleiner Prolo (:
hat geschrieben:jetzt du nach ART
Die kann ich dir gerne von Seite 1 kopieren, ich habe den Code sowieso gerade etwas aufgeräumt und optimiert. Aber ob du es schaffst die initialen Konditionen für
hat geschrieben:Kannst jetzt Ballwurf im Baseball-Stadion nach ART-Wurfparabel mit Zeitdilatation zeigen oder kannst es nicht
herauszufinden und einzugeben darf bezweifelt werden:
- Code: Alles auswählen
(* relativistische Wurfparabel || yukterez.net *)
G = 1; M = 1; c = 1; rs = 2 G M/c^2; T = tMax G M/c^3;
r0 = 151/100 rs; vo = 999/1000 c; φ = Pi/2; θ0 = 0; tMax = 2;
vr0 = vo Cos[φ]/j*k; vθ0 = vo/r0 Sin[φ]/j;
d1 = T/10; d2 = d1; wp = 30; step = T/200;
j = Sqrt[1 - vo^2/c^2];
k = Sqrt[1 - rs/r0];
sol = NDSolve[{
r''[t] == -((G M)/r[t]^2) + r[t] θ'[t]^2 - (3 G M)/c^2 θ'[t]^2,
r'[0] == vr0,
r[0] == r0,
θ''[t] == -((2 r'[t] θ'[t])/r[t]),
θ'[0] == vθ0,
θ[0] == θ0,
τ'[t] == Sqrt[c^2 r[t] + r[t] r'[t]^2 - c^2 rs + r[t]^3 θ'[t]^2 - r[t]^2 rs θ'[t]^2]/(c Sqrt[r[t] - rs] Sqrt[1 - rs/r[t]]),
τ[0] == 0
}, {r, θ, τ}, {t, 0, T}, WorkingPrecision -> wp,
MaxSteps -> Infinity, Method -> Automatic,
InterpolationOrder -> All];
t[ξ_] :=
Quiet[χ /.
FindRoot[
Evaluate[τ[χ] /. sol][[1]] - ξ, {χ, 0},
WorkingPrecision -> wp, Method -> Automatic]];
Τ := Quiet[t[ι]];
x[t_] := (Sin[Evaluate[θ[t] /. sol]] Evaluate[r[t] /. sol])[[1]]
y[t_] := (Cos[Evaluate[θ[t] /. sol]] Evaluate[r[t] /. sol])[[1]]
s[text_] := Style[text, FontSize -> font]; font = 11;
(* Eigenzeit *) Do[Print[
Rasterize[Grid[{{Show[Graphics[{
{Black, Circle[{0, 0}, rs]},
{Lighter[Gray], Dashed, Circle[{0, 0}, r0]}},
Frame -> True, ImageSize -> 400, PlotRange -> 2 r0],
Graphics[{PointSize[0.01], Red, Point[{x[т], y[т]}]}],
ParametricPlot[{x[η], y[η]}, {η, 0, т},
ColorFunction -> Function[{x, y, η},
Hue[0.85, 1, 0.5, Max[Min[(-т + (η + d1))/d1, 1], 0]]],
ColorFunctionScaling -> False],
ParametricPlot[{x[η], y[η]}, {η, 0, т},
ColorFunction -> Function[{x, y, η},
Hue[0, 1, 0.5, Max[Min[(-т + (η + d2))/d2, 1], 0]]],
ColorFunctionScaling -> False]]},
{Grid[{
{" ", s["Eigenzeit"], " = ", s[N[т, 8]], s["sek"]},
{" ", s["Koordinatenzeit"], " = ", s[N[Evaluate[τ[т] /. sol][[1]], 8]], s["sek"]},
{" ", s["Zeitdilatation"], " = ", s[N[Evaluate[τ'[т] /. sol][[1]], 8]], s["dτ/dt"]},
{" ", s["Winkel"], " = ", s[N[Evaluate[(θ[т] /. sol) 180/Pi][[1]], 8]], s["grad"]},
{" ", s["radialer Abstand"], " = ", s[N[Evaluate[r[т] /. sol][[1]], 8]], s["m"]},
{" ", s["x-Achse"], " = ", s[N[x[т], 8]], s["m"]},
{" ", s["y-Achse"], " = ", s[N[y[т], 8]], s["m"]}
}, Alignment -> Left]}}, Alignment -> Left]]
], {т, step, T, step}]
(* Koordinatenzeit *) Do[Print[
Rasterize[Grid[{{Show[Graphics[{
{Black, Circle[{0, 0}, rs]},
{Lighter[Gray], Dashed, Circle[{0, 0}, r0]}},
Frame -> True, ImageSize -> 400, PlotRange -> 14 rs],
Graphics[{PointSize[0.01], Red, Point[{x[Τ], y[Τ]}]}],
ParametricPlot[{x[η], y[η]}, {η, 0, Τ},
ColorFunction ->
Function[{x, y, η},
Hue[0.85, 1, 0.5, Max[Min[(-Τ + (η + d1))/d1, 1], 0]]],
ColorFunctionScaling -> False],
ParametricPlot[{x[η], y[η]}, {η, 0, Τ},
ColorFunction ->
Function[{x, y, η},
Hue[0, 1, 0.5, Max[Min[(-Τ + (η + d2))/d2, 1], 0]]],
ColorFunctionScaling -> False]]},
{Grid[{
{" ", s["Eigenzeit"], " = ", s[N[Τ, 8]], s["sek"]},
{" ", s["Koordinatenzeit"], " = ", s[N[ι, 8]], s["sek"]},
{" ", s["Zeitdilatation"], " = ", s[N[Evaluate[τ'[Τ] /. sol][[1]], 8]], s["dτ/dt"]},
{" ", s["Winkel"], " = ", s[N[Evaluate[(θ[Τ] /. sol) 180/Pi][[1]], 8]], s["grad"]},
{" ", s["radialer Abstand"], " = ", s[N[Evaluate[r[Τ] /. sol][[1]], 8]], s["m"]},
{" ", s["x-Achse"], " = ", s[N[x[Τ], 8]], s["m"]},
{" ", s["y-Achse"], " = ", s[N[y[Τ], 8]], s["m"]}
}, Alignment -> Left]}}, Alignment -> Left]]
], {ι, step, T, step}]
Abspeisend,
